If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+8t-9=0
a = 4; b = 8; c = -9;
Δ = b2-4ac
Δ = 82-4·4·(-9)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{13}}{2*4}=\frac{-8-4\sqrt{13}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{13}}{2*4}=\frac{-8+4\sqrt{13}}{8} $
| 18.2+1.5x=37.7. | | x-3=4x+(5-40) | | 0,5(5-7x)=8-(4x+6) | | 2x+1/4x=135 | | 21.7+n=42.28 | | m-13.4=88 | | 80-(4x+3)=4(x+8)+x | | 0,5(7d+4)=7-1,5d | | 6w=2w+28 | | 3+0,5(4a+8)=9-2a | | 4(x-6)+2=6(x=2)-8 | | 3(c+1)-4c=60 | | v+6.5=32.1 | | 10x+30=8x+40 | | 10x+3=8x+40 | | x-5/x+7x=-9 | | 16x^2+64x+48=0 | | 2+2x/5=-10 | | 26x-7-18x+4=22x-9-14x+13 | | 4e-2=2e+6 | | f-(-34)=-56 | | n+4.7=9.4 | | 3x/5-3=12 | | -78g=-156 | | x^2=81.25 | | 2m+4m=180 | | 19h=95 | | 5x^2+1=6x+2 | | 2x+12-8x=20-17x+11x-8 | | 7x-4=3x-100 | | 6-4p=66 | | 0.25-(1+x)^10=0 |